QML for Argoverse 2 Motion Forecasting Challenge

Tong Su Xishun Wang Xiaodong Yang
QCeraft

Abstract

To safely navigate in various complex traffic scenarios, autonomous driving sys-
tems are generally equipped with a motion forecasting module to provide vital
information for the downstream planning module. For the real-world onboard ap-
plications, both accuracy and latency of a motion forecasting model are essential.
In this report, we present an effective and efficient solution, which ranks the 3rd
place [1] in the Argoverse 2 Motion Forecasting Challenge 2022.

1 Introduction

As a core component of an autonomous vehicle (AV), motion forecasting or trajectory prediction
plays a crucial role to understand the behaviors of traffic agents. A prediction module leverages the
perception information [2] and outputs multi-modal future trajectories for nearby agents. However,
this is a challenging task due to the uncertainty of traffic actors and complexity of road topology [3].
In this report, we present an effective and efficient approach, which forecasts the future trajectories
of multi-class agents around the ego vehicle. Specifically, our model consists of five parts: (1) agent
history encoder that takes the agent-centric data as input, (2) agent interaction encoder dynamically
models the interactions of traffic agents, (3) vector map encoder making use of the local vector map
to provide the scene context [4], (4) anchor decoder and (5) prediction decoder which receive the
context features and respectively produce the proposals and future predictions.

2 Methodology

A trajectory prediction model aims to predict the trajectories of agents in the future 7' timesteps
based on the history observation of their past H timesteps. In this section, we will describe our
proposed approach as illustrated in Figure 1.

2.1 Agent History Encoder

In order to accurately model the history observation of traffic agents, we first apply an agent-centric
paradigm that coverts the trajectory of each agent to an ego-view coordinate system. The history
observation contains trajectory, velocity, heading and object type. By taking advantage of this agent-
specific ego-view, we standardise each actor trajectory such that the last timestep of history observa-
tion is always at the origin of coordinate system.

2.2 Agent Interaction Encoder

In the complex traffic scenarios, agents plan their future routes by interacting with their neighbors [5].
Therefore, modeling the interaction between agents is beneficial to predict their future trajectories.
The agent interaction encoder takes the interaction information as input, which includes the relative
position, velocity and heading. It is noted that we also convert the interaction input to the agent-
centric coordinate system.
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Figure 1: Illustration of the proposed approach. Encoders extract the temporal features and interac-
tion features of history observations. We fuse the dynamic features to get the proposals, and then use
self-attention to encode both trajectories and lanes to obtain the spatial context features. Together
with the proposals, the agent context that is from the spatial context features are decoded to anchors.
Finally, the prediction head outputs the multiple predicted trajectories and probabilities.

2.3 Vector Map Encoder

While the history observations of different agents are informative, the high-definition (HD) map
further provides the complementary social context for agents to better plan their future trajectories.
For the vector map, we pre-process each single vector map to lane segments. By splitting the vector
map we can improve our vector map encoder both in accuracy and efficiency. For a single agent,
we choose the lane segments within D meters. Note that D varies for different agent categories.
Furthermore, we transform the lane segments to each agent view and construct a spatial topology
feature. After that, the lane segment features are encoded into the social context [6].

2.4 Anchor Decoder and Prediction Decoder

Given the aforementioned features, we adopt the transformer network to integrate the social con-
text [7]. In the decoder stage, the social context is fed into the anchor decoder to predict the em-
beddings of IV anchors for each agent. Here the anchor embeddings can be decoded into future
waypoints. At the same time, we can select the target agent feature from the social context, and the
target agent feature is then decoded as the proposals. For the prediction decoder, we aim to produce
K proposed future trajectories along with their corresponding probabilities for each agent. Together
with proposals, the anchor embeddings are fed into the prediction decoder [8]. Finally, our model
outputs the multi-modal trajectories and probabilities for each agent.

2.5 Training Details

Our loss is composed of two parts: anchor loss and prediction loss. For the anchor loss, we use the
mean squared error and cross entropy of the future waypoints for each agent. For the prediction loss,
we adopt the same strategy while for all future timesteps. We set the batch size as 12 for training.
K = 6 is used to predict the multi-modal future trajectories.
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3 Experiments

3.1 Dataset

We evaluate our proposed approach on Argoverse 2. This dataset consists of 250,000 scenarios with
trajectory data for multiple object types (vehicle, pedestrian, motorcyclist, cyclist and bus). Each
scenario is 11s long and is annotated at 10 frames per second. Each sample contains an agent marked
as "focal track" that is needed to be predicted. Our trajectory prediction horizon is 60 timesteps (6s)
based on the observed history of 15 timesteps (1.5s).

3.2 Quantitative Results

We follow the same evaluation protocol as defined in the challenge, and use the metrics including
average displacement error (ADE), final displacement error (FDE), miss rate (MR), brier-minADE
and brier-minFDE to evaluate the performance. The result on test set is shown in Table 1. For the
final submission, we independently train M/ models and obtain M K candidate trajectories. At the
inference stage, we perform the K-means clustering for all endpoints of the candidate trajectories.
The trajectories and their probabilities in the same cluster are averaged and K predictions are gener-
ated. It is worth noting that our approach performs particularly well (ranks the 1st place) on metric
minADE (K = 6), indicating that our model is stable among all modalities.

Table 1: Evaluation on the test set of Argoverse 2.

| minADE | minFDE | Miss Rate | brier-minADE | brier-minFDE
K=1] 18369 | 49779 | 06212 | - | -
K=6| 06882 | 13850 | 01894 | 23183 | 19547

Furthermore, we report our baseline performance for each object category on the validation set of
Argoverse 2, as shown in Table 2. We observe that the results of cyclist and bus are relatively
inferior to other object types, which may result from the fact that they have different behaviors and
insufficient training samples.

Table 2: Evaluation of our baseline on the validation set of Argoverse 2.

| minADE | minFDE | brier-minADE | brier-minFDE

Vehicle 0.8271 1.4478 1.5051 2.1258
Pedestrian 0.3482 0.6266 1.0196 1.2890
Cyclist 1.0017 1.7990 1.6721 2.4694
Motorcyclist | 0.6643 1.2257 1.3401 1.9015
Bus 1.0320 1.4625 1.7144 2.1450

3.3 Qualitative Results

As demonstrated in Figure 2, we visualize two prediction examples of our approach on the validation
set of Argoverse 2. The black lines and blue points represent the road lanes and other agents around
the target agent. The cyan points denote the observed history trajectory of the target agent, and the
yellow points are the multi-modal outputs of our model and the red line is the ground truth future
trajectory. The endpoints of predictions and ground truth are colored magenta and green. As can be
seen, when encountering crowded intersections, our model can make correct predictions no matter
the target agent is moving or static.



Figure 2: Visualization of two representative scenes. At the intersections, agents usually tend to
have diverse maneuvers. Our approach can provide multiple reasonable predicted trajectories.
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