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1. Introduction
The estimation of depth from stereo image pairs is a

longstanding computer vision task with applications in
robotics [12, 13]. In this report, we are interested in building
a stereo matching solution for a high resolution images in
the Argoverse dataset [8] that runs within 200ms in modern
GPUs. To allow for flexible design of the model in satisfying
the time requirements, we adopt a RAFT based model in our
solution [16, 18] which has gained much attention [6, 14]
in recent years, wherein an update operation is iteratively
performed to refine the disparity predictions as well as the
hidden states. Through the use of such design, the number of
unrolled iterations can be adjusted depending on the desired
model latency.

However, this class of models also introduces huge mem-
ory consumption necessary for backpropagation through
time (BPTT) during training. To address this issue, We in-
troduce the following contributions. First, we adopt deep
equilibrium (DEQ) formulation [2, 3] into our RAFT-based
stereo model. Additionally, to improve the representation
power, we follow the canonical volumetric based deep stereo
models [7, 15] and use 3D convolutions to extract geometric
features from the cost volume. This 3D features are uti-
lized during the iterative updates which supplies the network
with geometric knowledge. We also utilize the 3D features
to regress an initial disparity estimate, allowing for better
convergence of the model [4].

2. Method
The overall model contains two principal components,

the volumetric submodule and the iterative updates to refine
the disparity predictions. We illustrate the model in Figure 1.

2.1. Geometric stereo

We begin by extracting feature maps for both the input
images I ∈ RH×W×3. We follow RAFT and pass the images
into encoder sub-networks, with the objective of extracting
matching and context feature maps. Both the left and right in-
put images are passed into the matching sub-network to give

the matching feature maps Im
L , I

m
R ∈ Rh×w×c. The context

sub-network is only applied to the reference image, which in
this case is the left image, and it gives us the initial hidden
states h[0](s) and the context features q(s) at multiple scales s.

We build a cost volume C ∈ Rh×w×D×co , following previ-
ous stereo matching works by computing pairwise correla-
tions [17] using the extracted matching feature maps, where
D is the maximum disparity. A 3D UNet is then applied
on the correlation volume giving us 3D geometric features
C(s) ∈ Rh/2s×w/2s×D/2s×cs at multiple scales. At the highest
scale s = 0 of the aggregated volume, we compute an ini-
tial disparity estimate as a weighted sum of the candidate
disparities [15]

ˆdinit =
D

∑
d=0

d ×So f tmax(qd). (1)

Alternatively, we use the weighted sum of only the top match-
ing candidates [5].

2.2. Deep Equilibrium Stereo

Our iterative updates to refine ˆd[0] and the hidden states
h[0](s) follows the update operations in RAFT-Stereo. A
GRU-based [9] convolutional layers are used to update the
hidden states using the image contexts q(s) following the
Slow-fast GRU updates. At the highest scale, we additionally
sample values from the cost volume that is used as additional
input into the update layers. However, instead of sampling
just the correlation values from the volumes, we trilinearly
sample the 3D features at the disparity of interests, giving
our model more representational power that is aware of the
3D contexts.

These update steps, when implemented naively, may con-
sume a massive amount of memory during training, espe-
cially with the addition of the 3D contexts on a high resolu-
tion input images. Therefore, we adopt a deep equilibrium
formulation into our model. Specifically, we solve for the
fixed point h∗(s) and d̂∗ and turn off the autograd functional-
ity of Pytorch in all the previous update steps. We also use
Anderson solver [1] to accelerate convergence to the fixed

1



Figure 1. Overall architecture of the model.

point. As the autograd is only turned on at the fixed point,
the memory consumption for the iterative updates is reduced
to almost free.

The other concern that we need to address is the real-time
requirement of the model, and a quick convergence to the
fixed point is desirable. The initial disparity predicted by
the 3D volumetric sub-network helps with this objective, but
we also want to reduce the inference time for the iterative
updates. To achieve this, we train a hyper-anderson solver [4]
to substitute the traditional anderson solver.

3. Experiments
We first train our model on large synthetic datasets before

finetuning it to the Argoverse dataset. We use the SceneFlow
dataset [17], and also capture a dataset from CARLA driving
simulator [10, 11], providing us with a large data in urban
driving scenario with sensor configuration which resemble
that of Argoverse. We train our model on the synthetic data
randomly cropped with size 512×960 and a batch size of 4
for 50 epochs. We set the maximum disparity of interest to
be 384.

To also improve the generalization ability towards the real
world data, we perform color augmentation following [19]
by adding random gaussian noise with standard deviation
0.02 and gaussian blur with standard deviation range sam-
pled randomly from [0,1] to the right image. We also apply
color jitters to the right image with brightness, contrast, satu-
ration, and hue ranges of 0.2,0.2,0.2 and 0.01. Additionally,
we perform random zooming and stretching of the image to
allow generalization to varying disparity distribution.

We then finetune the model on the Argoverse dataset that
is randomly cropped into 1920×1920 with a batch size of 2.
Training on such a large resolution is made possible due to

the DEQ implementation. A hyper anderson solver is then
trained with this model as a fixed point target.

Our model is trained on a single Nvidia RTX 3090 GPU.
Based on the 200ms and the latency comparison between
RTX 3090 and V100, we require our model to run within
200/1.29 = 155ms. In our experiments, we found that we
can allow for 4 ∼ 5 update iterations using the hyper ander-
son solver. In our submitted result, we only used 4 iterations
to ensure our model satisfies the real-time requirements. At
the time of submission, this model ranked 2nd on the Argov-
erse Stereo Competition 2022 Leaderboard.

4. Conclusion
We presented a design of stereo matching network that

is flexible to the requirements. The model is inspired by
the canonical volumetric design of stereo matching models
and the iterative refinements design that is recently gaining
attention. By combining both concepts, our model benefits
from the geometric knowledge obtained from the volumetric
design and the flexibility of iterative refinements. However,
more thorough experiments still needs to be done to explore
the potential of the proposed model.

The codes will be made available on https://
github.com/antabangun/ges
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