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Abstract— Recent research has shown that stereo disparity
estimation can be formulated as a supervised learning task, and
many approaches use deep learning to solve this problem with
impressive performance on most of the standard benchmarks.
However, creating training datasets with a dense ground-
truth in natural outdoor environments is still very challenging.
The Argoverse team has released a dataset with a sparse
ground-truth for training disparity algorithms and organized
challenges. In this report, we present our solution for the 2022
Argoverse Stereo Estimation Challenge. Our approach uses a
synthetic dataset extracted from the CARLA simulator for
training, and then we perform fine-tuning on the Argoverse
stereo dataset. Final tests are performed on the challenge
leaderboard. We got third place and honorable a mention.

I. INTRODUCTION

Stereo matching aims to estimate the disparity map be-
tween a pair of rectified images. Disparity refers to the
horizontal distance between a pair of corresponding pixels in
the left and right images. The disparity (disparity) of a pixel
can be converted to depth (Z) by Z = Bf/disparity. In this
way, the accuracy of the depth improves with the prediction
of the disparity. Disparity estimation is an essential task for
computer vision applications, such as autonomous driving,
3D reconstruction, and robot navigation.

Significant progress of deep learning in the field of com-
puter vision has been also extended to geometric problems
such as stereo matching. Currently, deep learning based
approaches have reached state of the art performance in most
stereo disparity benchmarks, such as Middlebury, KITTI,
ETH3D, and Argoverse.

However, scenarios of the real world not only require
state of the art algorithms but also real time inference, and
domain adaptation. Argoverse has released a stereo dataset in
different lighting and weather conditions containing images
at ten times the resolution relative to images in the KITTI
dataset, and 16 times as many training frames, making it a
much larger and more challenging dataset. The ground-truth
depth is derived from LiDAR point cloud accumulation. The
Argoverse team has organized the 2022 stereo challenge to
motivate researchers to test algorithms that work well, run
fast, and generalize to new scenes at the same time in the
Argoverse stereo dataset.

For this challenge we chose PWC-Net, a CNN (Convolu-
tional Neural Network) that achieves a good balance between
good results in stereo disparity prediction and inference

(a) Left RGB image: urban, night, rain
and fog

(b) Dense Disparity map (GT)

(c) Left RGB image: highway, day
and rain

(d) Dense Disparity map (GT)

Fig. 1. Dense synthetic stereo dataset generated using the CARLA
simulator.

speed named. For training we create a dense synthetic stereo
dataset from CARLA simulator [3]. Then, we fine-tune the
model using the Argoverse stereo dataset. For evaluation,
metrics from the KITTI stereo challenge are adopted.

II. SYNTHETIC DATASET

A dense synthetic stereo dataset was created using the
CARLA simulator. We configure a simulated agent using a
setup similar to the one used in the Argoverse stereo dataset
for data collection. We use two RGB cameras at a height of
1.7m on the roof with a baseline (distance between the two
cameras) of 0.2986 m. Each camera has a FOV=30 deg, the
images have a size of 2464× 2056 pixels. In the same pose
as the left camera we set a depth camera that provides raw
data of the scene encoding the distance of each pixel to the
camera (also known as depth buffer or Z-buffer) to create a
depth map of the elements in the scene. To create our dense
stereo dataset we use the depth (Z) values and the baseline
value in pixels to create disparity maps for each left RGB



Fig. 2. PWC-Net for disparity estimation. Adapted from [7]

image as shown below.

disparity =
Bf

Z
(1)

Where B is the baseline and f is the focal length of the
camera (calculated from FOV), Z is depth. We collected
approximately one hundred thousand frames.

Our dataset includes urban, residential and highway envi-
ronments, as well as different weather and lighting conditions
including rain, fog, day, night, etc. Figure 1 shows two
examples of left RGB images and their respective dense
disparity map captured from the CARLA simulator.

III. PWC-NET FOR STEREO DISPARITY ESTIMATION

According to the authors, PWC-Net is a CNN model for
optical flow that has been designed according to simple and
well-established principles: pyramidal processing, warping,
and the use of a cost volume. Cast in a learnable feature
pyramid, PWC-Net uses the current optical flow estimate to
warp the CNN features of the second image. It then uses the
warped features and features of the first image to construct
a cost volume, which is processed by a CNN to estimate the
optical flow [7]. PWC-Net outperforms optical flow methods
on the MPI Sintel and KITTI 2015 benchmarks, running at
about 35 fps on Sintel resolution (1024× 436) images.

Considering two rectified RGB images coming from a
calibrated stereo camera, we can have an epipolar line
across the two images and the stereo matching is the pixel
correspondence between the two images along the epipolar
line in the horizontal direction on the x-axis. Thus, for this
challenge we consider stereo matching as a special case of
optical flow where disparities between the stereo pair can be
modeled as optical flow on the x-axis of the image. So we
can use models used for optical flow ( x and y coordinates)
to solve the disparity problem as optical flow only at the x
coordinate along the epipolar line between the left and right
image.

Figure 2 summarizes the key components of PWC-Net
adapted for stereo estimation. Feature pyramid 1 and feature
pyramid 2 correspond to learnable feature pyramids from a
feature pyramid extractor feeded with the left and right RGB
rectified images. A warping operation from the traditional
optical flow approach is used as a layer in the network to

estimate large motion. PWC-Net has a layer to construct
a cost volume, which is then processed by CNN layers to
estimate the flow (disparity). The warping and cost volume
layers have no learnable parameters and reduce the model
size. Finally PWC-Net uses a context network to exploit
contextual information and refine the disparity.

IV. IMPLEMENTATION

Our adaptation of PWC-Net for disparity estimation is
implemented in the MMFlow framework [1]. MMFlow is
an open source pytorch based toolbox that is a part of the
OpenMMLab project. MMFlow is the first toolbox that pro-
vides a framework for unified implementation and evaluation
of optical flow algorithms.

V. TRAINING

We use the same parameters used for training in [7] and the
same loss proposed in FlowNet [2]. We use a search range
of 4 pixels to compute the cost volume at each pyramid
level. We first train the model using our synthetic stereo
dataset using the Slong learning rate schedule introduced in
[4], Starting from 0.0001 and reducing the learning rate by
half at 0.4M, 0.6M, 0.8M, and 1M iterations. Finally, we
fine-tune the model using Argoverse stereo dataset using the
Sfine schedule [4]. Batch size 4 was used for all the training
process.

For data augmentation, we use a random crop (768 x 2432
patches). Inference is performed in full resolution.

VI. RESULTS

Figure 3 shows two frames: one for our synthetic dataset
and the other taken from the validation set of the Argov-
erse stereo dataset. Figure 3a shows the left RGB image,
Figure 3b represents the ground-truth (dense for our dataset
and sparse for Argoverse stereo dataset) and then disparity
results: first we show inference results for a PWC-Net model
trained only on our synthetic dataset (Figure 3c) and finally
inference results for the same model but with fine-tuning
performed on the Argoverse stereo dataset (Figure 3d).

Note that the ground-truth disparity released together with
the Argoverse stereo dataset is sparse (Figure 3b below) and
many pixels in the background and foreground do not have
ground-truth, mainly in the upper parts of the image, for
example: the tops of buildings, traffic lights very close to
the camera and lamps. However, PWC-Net trained only on
our dataset correctly calculates disparity in the upper parts
(Figure 3c above and below). This is because the disparity
ground-truth of our dataset is dense and available at training
time for all pixels in the image. In the same way as testing
on the synthetic dataset, inference on the Argoverse stereo
dataset (Figure 3d) also benefited from prior training on
the synthetic dataset. Disparity in the upper parts in the
Argoverse dataset is correctly estimated.

An important result of training on our synthetic stereo
dataset is domain adaptation. The model trained only using
synthetic data obtains very satisfactory results on the test
set of the Argoverse as shown in Figure 3c. In these figures



(a) Left RGB image (b) Ground-Truth (c) Inference: PWC-Net trained only
using our CARLA stereo dataset

(d) Inference: PWC-Net trained using
our CARLA stereo dataset + fine-
tuning in Agoverse stereo dataset.

Fig. 3. Comparison between two models (PWC-Net) tested in our synthetic stereo dataset (first row) and Argoverse stereo dataset (second row). The
first column is the left RGB image, and the second column is the ground-truth. The firs model is trained only using our CARLA stereo dataset (inference
results on third column) and the second model is the same model with further fine-tuning in Argoverse stereo dataset (last column).

we can see that the shape of the objects and their edges
are well defined and thin objects are correctly differentiated,
for example, we can clearly see power cables and other thin
objects, while when fine-tuning is performed on the sparse
dataset these details tend to disappear.

Argoverse Stereo Competition server computes the per-
centage of bad pixels averaged over all ground-truth pixels,
similar to the KITTI Stereo 2015 benchmark [5] [6] for all
1,094 test disparities from 15 log sequences.

The disparity of a pixel is considered to be correctly esti-
mated if the absolute disparity error is less than a threshold
or its relative error is less than 10% of its true value. Three
disparity error thresholds are defined: 3, 5, and 10 pixels.
The leaderboard ranks all methods according to the number
of bad pixels using a 10 pixels threshold (all:10 is the main
metric). We compare our results in Table I using all:10, fg:10,
and bg:10.

Acording to the online leaderboard1, as shown in Table
I the overall ten-pixel-error (all:10) for the PWC-Net is
2.47, we occupy the third place for all:10 and bg:10 metrics
and second place for fg:10 metric. We surpassed by a
wide margin the results of [8]. For the 2022 Argoverse
stereo competition, methods that run in real time are desired
and algorithms must run faster than 200 ms per disparity
prediction (during forward pass). We achieve an average
inference time of 191.60 ms on an Nvidia GeForce RTX
2080Ti GPU.

VII. CONCLUSIONS

We created a dense synthetic stereo dataset collected from
the CARLA simulator, and we trained PWC-Net using this

1https://eval.ai/web/challenges/challenge-page/
1704/leaderboard/4066

TABLE I
CARLA LEADERBOARD RANKING

Participant team all:10 fg:10 bg:10
GMStereo 1.61 1.71 1.56
MSCLab

(DEQ Stereo) 2.39 3.34 2.01

LRM
(Our entry) 2.47 2.67 2.38

Odepth 3.78 4.57 3.46
ACVNet

(Baseline) [8] 4.06 7.77 2.54

synthetic dataset, and we obtained good disparity estimation
on test images from both our dataset and the Argoverse stereo
dataset. Subsequently, fine tuning is performed on the target
dataset (Argoverse stereo dataset). The estimated disparity
maps achieve very good results in the Argoverse evaluation
server and also demonstrate that pretraining in our synthetic
stereo dataset improves disparity estimation in all regions of
the image.
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