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Abstract

Predicting the future motion of road participants is crucial for autonomous driving
but is extremely challenging due to staggering motion uncertainty. Recently,
most motion forecasting methods resort to the goal-based strategy, i.e., predicting
endpoints of motion trajectories as conditions to regress the entire trajectories,
so that the search space of solution can be reduced. However, accurate goal
coordinates are hard to predict and evaluate. In addition, the point representation
of the destination limits the utilization of a rich road context, leading to inaccurate
prediction results in many cases. Goal area, i.e., the possible destination area,
rather than goal coordinate, could provide a more soft constrain for searching
potential trajectories by involving more tolerance and guidance. In view of this, we
propose a new goal area-based framework, named Goal Area Network (GANet),
for motion forecasting, which models goal areas rather than exact goal coordinates
as preconditions for trajectory prediction, performing more robustly and accurately.
Specifically, we propose a GoICrop (Goal Area of Interest) operator to effectively
extract semantic lane features in goal areas and model actors’ future interactions,
which benefits a lot for future trajectory estimations.

1 Introduction

We propose Goal Area Network framework (GANet) that predicts potential goal areas as conditions
for motion forecasting. As shown in Figure 1, there are three stages in GANet, which are trained in an
end-to-end way, and we construct a series of GANet models following this framework. They overcome
the shortcomings of the aforementioned goal-based prediction methods. First, an efficient encoding
backbone is adopted to encode motion history and scene context. Then, we predict approximate
goals and crop their surrounding goal areas as more robust conditions. Moreover, we introduce a
GoICrop operator to explicitly query and aggregate the rich semantic features of lanes in the goal
areas instead of using stuffless goal coordinates embeddings. GoICrop learns the interactions between
maps and actors in the goal areas, and captures the interactions among actors in the future implicitly.
Finally, we make the formal motion forecasting conditioned on motion history, scene context, and the
aggregated goal area features.
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Figure 1: Illustration of GANet framework, which consists of three stages: (a) Context encoding
encodes motion history and scene context; (b) Goal prediction predicts possible goals. GoICrop
retrieves and aggregates goal area map features and models the actors’ interactions in the future; (c)
Motion forecasting estimates multi-feasible trajectories and their corresponding confidence scores.

Our method is different from previous works as follows. (1) We make the first attempt to propose a
new goal area-based framework with three stages trained end-to-end for motion forecasting, which
makes predictions based on motion history, scene context, and predicted goal areas. We give the
definition of goal areas and experimentally verify the effectiveness of modeling goal areas. (2) We
employ a GoIcrop operator to extract rich semantic map features in goal areas, which effectively
models distant relevant map features slighted by previous methods. These map features provide
more robust information than the goal coordinates embedding. This is because that GoICrop’s
distance-based attention implicitly captures the interactions between maps and trajectories in goal
areas and the interactions among actors in the future. This also constrains the trajectories to follow
driving rules and map topology in a data-driven manner, rather than relying on a well-designed goal
space.

2 Method

This section describes our proposed GANet framework in a pipelined manner. An overview of the
GANet model architecture is shown in Fig. 2.

2.1 Motion history and scene context encoding

As shown in Figure 2, the first stage of motion forecasting is driving context encoding, which extracts
actors’ motion features and maps features, and models their interactions. We adopt LaneGCN’s [4]
backbone to encode motion history and scene context for its outstanding performance. Specifically,
we apply a 1D CNN with Feature Pyramid Network (FPN) to extract actors’ motion features. The
input is observed past trajectories of all actors in a scenario. We represent each trajectory as a
sequence of Bird’s Eye View (BEV) coordinate displacements {∆p−(T ′+1), ...,∆p−1,∆p0}, where
∆pt is the 2D coordinates displacements from step t− 1 to t. We observe T ′ steps. For trajectories
with observed steps less than T ′, we pad them with zeros by adding a binary 1× T ′ mask to indicate
whether the element is padded or not. We concatenate the displacements and the mask to obtain an
input tensor of size 3× T ′.

Following [4], we use a multi-scale LaneConv network to encode map features. After driving context
encoding, we obtain a 2D feature matrix X where each row Xi indicates the feature of the i-th actor,
and a 2D feature matrix Y where each row Yi indicates the feature of the i-th lane node. We can also
use other methods to encode motion history and scene context.

2.2 Goal prediction

In stage two, we predict possible goals for the i-th actor based on Xi. In practice, a driver’s driving
intent is highly multi-modal. For example, he or she may stop, go ahead, turn left, or turn right when
approaching an intersection. Therefore, we try to make a multiple-goals prediction. We construct a
goal prediction header with two branches to predict M possible goals and their confidence scores for
each actor. We apply a Multi Layer-Perception Neural Network (MLP) in the regression branch to
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Figure 2: The GANet model overview. (a) A feature extracting model encodes and fuses map and
motion features. (b) The "one goal prediction" module predicts a goal area in the trajectory’s middle
position and aggregates its features. (c) The "three goals predictions" module predicts three goal
areas, aggregates their features, and models the actors’ future interactions. (d) The final prediction
stage predicts K trajectories and their confidence scores.

regress M BEV coordinates Gn,end = {(gmn,end)}j∈[0,M−1], where gmn,end is the m-th predicted goal
coordinates of the n-th actor. For the classification branch, we apply an MLP to output M confidence
scores Cn,end = {(cmn,end)}m∈[0,M−1], where cmn,end is the m-th predicted goal confidence of the
n-th actor. We use the sum of classification loss and regression loss to train this stage.

Given M predicted goals, we find a positive goal m̂ that has the minimum Euclidean distance with
the ground truth coordinates at the final step. For classification, we use the max-margin loss similar
to [4]:

Lcls_end =
1

N(M − 1)

N∑
n=1

∑
m̸=m̂

max(0, cmn,end + ϵ− cm̂n,end) (1)

where N is the total number of actors and ϵ = 0.2 is the margin. The margin loss expects each goal
to capture a specific pattern and pushes the goal closest to the ground truth to have a highest score.
For regression, we apply the smooth L1 loss on the positive goals:

Lreg_end =
1

N

N∑
n=1

reg(gm̂n,end − a∗n,end) (2)

where a∗n,end is the ground truth BEV coordinates of the n-th actor trajectory’s final step, reg(z) =∑
i d(zi), zi is the i-th element of z, and d(zi) is a smooth L1 loss.

Additionally, we also try to add a "one goal prediction" module at each trajectory’s middle position to
retrieve the map features at the approximate middle position. The loss term for this module is given
by:

Lreg_mid =
1

N

N∑
n=1

reg(gn,mid − a∗n,mid) (3)

where a∗n,mid is the ground truth BEV coordinates of the n-th actor trajectory’s middle step.

The total loss at the goal prediction stage is:

L1 = α1Lcls_end + β1Lreg_end + ρ1Lreg_mid (4)

2.3 GoICrop

We choose the predicted goal with the highest confidence among M goals as an anchor. This anchor
is the approximate destination with the highest possibility that the actor may reach based on its
motion history and driving context. We crop maps within 6 meters of the anchor as the goal area of
interest rather than accurate goal coordinates, which relaxes the strict goal prediction requirement.
The future behavior of an actor strongly depends on its destination area’s context, i.e., the maps and
other actors. Although previous works have explored the interactions between actors, the interactions
between actors and maps in goal areas and the interactions among actors in the future have received
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less attention. Thus, we retrieve lane nodes in goal areas and apply a GoICrop module to aggregate
these map node features as follows:

x′
i = ϕ1(xiW0 +

∑
j

ϕ2(concat(xiW1,∆i,j , yj)W2))W3 (5)

where xi is the feature of i-th actor and and yj is the feature of j-th lane node, Wi is a weight matrix,
ϕi is a layer normalization with ReLU function, and ∆i,j = ϕ(MLP (vi − vj)), where vi denotes
the anchor’s coordinates of i-th actor and vj denotes the j-th lane node’s coordinates. GoICrop serves
as spatial distance-based attention and updates the goal area lane nodes’ features back to the actors.
We transpose xi with W1 as a query embedding. The relative distance feature between the anchor
of i-th actor and j-th lane node are extracted by ∆i,j . Then, we concatenate the query embedding,
relative distance feature, and the lane node feature. An MLP is employed to transpose and encode
these features. Finally, the goal area features are aggregated for i-th actor.

Previous motion forecasting methods usually focus on the interactions in the observation history.
However, actors will interact with each other in the future to follow driving etiquette, such as avoiding
collisions. Since we have performed predictive goal predictions and gotten possible goals for each
actor, our framework can model the actors’ future interactions. Hence, we utilize the predicted anchor
positions and apply a GoICrop module as equation 5 to implicitly model actors’ interactions in the
future. We consider the other actors whose future anchor’s l2 distance from the anchor of i-th actor
are samller than 100 meters.

2.4 Motion estimation and scoring

We take the updated actor features X as input to predict K final future trajectories and their confi-
dence scores in stage three. Specifically, we construct a two-branch multi-modal prediction header
similar to the goal prediction stage, with one regression branch estimating the trajectories and
one classification branch scoring the trajectories. For each actor, we regress K sequences of BEV
coordinates An,F = {(akn,1, akn,2, ..., akn,T )}k∈[0,K−1], where akn,t denotes the n-th actor’s future
coordinates of the k-th mode at t-th step. For the classification branch, we output K confidence
scores Cn,cls = {(ckn)}k∈[0,K−1] corresponding to K modes. We find a positive trajectory of mode
k̂, whose final-step coordinate has the minimum Euclidean distance with the ground truth. For
classification loss Lcls, we use the margin loss similar to the goal prediction stage. For regression
loss Lreg , we apply the smooth L1 loss on all predicted steps of the positive trajectories.

To emphasize the importance of the goal, we add a loss term Lend stressing the penalty at the final
step.

The loss function for training at this stage is given by:

L2 = α2Lcls + β2Lreg + ρ2Lend (6)

2.5 Training and inference

As all the modules are differentiable, we train our model with the loss function:

L = L1 + L2 (7)

Although the various losses may seem complicated, their structures are almost the same. The
parameters are chosen to balance the training process.

For inference, GANet (1) encodes motion and scene context; (2) predicts a goal at the middle position,
crops a goal area, and aggregates its map features; (3) predicts three goals and chooses the one with
the highest confidence to crop a goal area of interest; (4) aggregates the goal area map features and
models actors’ interactions in the future; (5) estimates K trajectories and their confidence scores.

3 Implementation Details

We train our model on 2 A100 GPUs using a batch size of 128 with the Adam optimizer for 42
epochs. The initial learning rate is 1 x 10-3, decaying to 1 x 10-4 at 32 epochs.
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Table 1: Results on Argoverse1 motion forecasting test (leaderboard).

Method b-minFDE
(K=6)

MR
(K=6)

minFDE
(K=6)

minADE
(K=6)

minFDE
(K=1)

minADE
(K=1)

MR
(K=1)

LaneRCNN [1] 2.147 0.123 1.453 0.904 3.692 1.685 0.569
TNT[2] 2.140 0.166 1.446 0.910 4.959 2.174 0.710

DenseTNT (MR)[3] 2.076 0.103 1.381 0.911 3.696 1.703 0.599
LaneGCN [4] 2.059 0.163 1.364 0.868 3.779 1.706 0.591

mmTransformer[6] 2.033 0.154 1.338 0.844 4.003 1.774 0.618
GOHOME [8] 1.983 0.105 1.450 0.943 3.647 1.689 0.572

HOME [7] - 0.102 1.45 0.94 3.73 1.73 0.584
DenseTNT (FDE)[3] 1.976 0.126 1.282 0.882 3.632 1.679 0.584

TPCN [5] 1.929 0.133 1.244 0.815 3.487 1.575 0.560

GANet(Ours) 1.790 0.118 1.161 0.806 3.455 1.592 0.550

Table 2: Results on Argoverse2 motion forecasting test (leaderboard).

Method b-minFDE
(K=6)

MR
(K=6)

minFDE
(K=6)

minADE
(K=6)

minFDE
(K=1)

minADE
(K=1)

MR
(K=1)

GANet 1.9791 0.1709 1.3614 0.7335 4.5752 1.8078 0.6082

4 Experiments

4.1 Comparison with State-of-the-art

We compare our approach with state-of-the-art methods. As shown in Table 1, our GANet outper-
forms existing goal-based approaches. Specifically, we make a detailed comparison with LaneGCN
because we adopt their backbone to encode motion history and scene context, which demonstrate the
effectiveness of GANet. Public results on the official motion forecasting challenge leaderboard show
that our GANet method significantly beats LaneGCN by decreases of 28%, 15%, 13% and 9% in
MR6, minFDE6, brier-minFDE6, and minFDE1, respectively. Table 2 shows our result on argoverse2
test set.
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