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Abstract

In this technical report, we show the details of our so-
lution for 3D object detection competition in CVPR 2022
Workshop on Autonomous Driving. Furthermore, extending
experiments are conducted to show the effectiveness of each
sub-module of our solution.

1. Dataset and Metrics
First of all, we give a brief introduction to the dataset and

metrics related to the competition.
Dataset. The Argoverse 2 Sensor Dataset [5] is em-

ployed for this competition, which includes 1,000 scenar-
ios (750 for training, 150 for validation and 150 for testing)
with 3D bounding box annotation. Each sequence lasts 15
seconds with 10 FPS for LiDAR frames. The synchronized
camera images and HD maps are also available.

Metrics. 26 categories of objects within a 150-meter
range are used for evaluation, e.g., regular vehicles and
pedestrians, etc. Composite detection score (CDS) is used
as the main metric, measured by the mAP and scale error,
translation error, and orientation error together. More de-
tails can be found on the official website.

2. Proposed Method
The pipeline of our method is illustrated in Fig. 1.

Firstly, the transformation metrics is used to align the pre-
vious 4 point cloud frames to current frame. Then, we split
the merged point cloud to point clouds in the nearby region
and far region. Secondly, we adopt the 3D object detec-
tion framework CenterPoint [9] with multiple resolutions
and TTA / WBF fusion to obtain detection result. In the
end, we reuse WBF fusion on multi-resolution and multi-
range models to get the final result.

*Equal contribution.

2.1. Baseline 3D Object Detector

CenterPoint [9] is a 3D object detection algorithm, which
is proposed to represent and detect objects with rotationally
invariant points. This method extracts feature from point
cloud by a 3D sparse convolution network and then com-
presses the 3D feature map to 2D by height compression.
Further, it adopts an elaborate anchor-free head for 3D ob-
ject detection. Specifically, it involves a heatmap head and
a regression head to predict the centers of objects with the
help of rendered Gaussian kernels and estimate other prop-
erties of objects, including sub-voxel offset, height, sizes
and rotation, respectively. In our implementation, we group
the categories with similar shapes together and use a multi-
head strategy to handle each of them. In addition, each
heatmap head for classification only needs to focus on one
class.

2.2. Multi-head Assignment

Argoverse 2 has 26 categories, and the assignment of
multi-head is very important for the final performance. In
Tab. 1 we show the categories for each head in our solution.

Head Categories

1
BOX TRUCK, TRUCK CAB, TRUCK,
ARTICULATED BUS, BUS, SCHOOL BUS

2
LARGE VEHICLE, VEHICULAR TRAILER,
REGULAR VEHICLE, MESSAGE BOARD TRAILER

3 BICYCLE, MOTORCYCLE
4 BICYCLIST, MOTORCYCLIST
5 CONSTRUCTION CONE, DOG
6 BOLLARD, CONSTRUCTION BARREL
7 PEDESTRIAN, STROLLER
8 SIGN, STOP SIGN, MOBILE PEDESTRIAN CROSSING SIGN
9 WHEELED RIDER, WHEELED DEVICE, WHEELCHAIR

Table 1: The categories for each head in our solution.

Since Argoverse benchmark provides multi-modal infor-
mation, e.g., LiDAR, images and HDmap, the fusion of the
information play a vital role in object detection. We refer to
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Figure 1: The pipeline of our solution.

MapFusion [1] to fuse the map information during training.

2.3. Training Details

Hyper-parameter. The epoch number is set as 20, the
optimization algorithm is AdamW with a one-cycle learn-
ing rate policy, and the max learning rate for CenterPoint is
0.003, while the weight decay is 0.01 and momentum is 0.9.
3D IoU Loss [10] is employed during training.

Data Augmentation. Data augmentation is applied to
guarantee data diversity and improve the robustness of the
network. Our data augmentation strategies include 1) ran-
dom rotation from [−π

4 ,
π
4 ] around the gravity axis, 2) ran-

dom flipping, 3) random scaling from the uniform distribu-
tion 0.9 to 1.1 and 4) GT-aug [7] which copy the objects
from other frame and paste into the current frame. Further-
more, 4 previous LiDAR sweeps are accumulated (temporal
augmentation) to leverage the temporal information.

Multi-resolution Training. The resolution for voxeliza-
tion affects the performance, higher resolution with smaller
voxels tends to be easier to detect the small size objects
(e.g., pedestrians, bicyclists), while the higher resolution
with larger voxels has better behavior to detect the large
size objects (e.g., buses, trucks). We use a multi-resolution
strategy while training the model,more specifically, 4 reso-
lutions (i.e. 0.050m, 0.075m, 0.100m, 0.125m) are used for
the voxelization.

Multi-range Training. The evaluation range is 150m.
It is GPU memory-consuming to load all the points and the
voxels with high resolution into the memory. Thus we pro-
pose to divide the point cloud into two different ranges, i.e.,
0 ˜ 60m and 60m ˜ 150m. The detection results from two
ranges will be simply merged as final results.

2.4. Inference Details

Test Time Augmentation (TTA) and Weighted Box Fu-
sion (WBF) are employed to obtain better results for each
model trained with different voxel resolutions. Then the re-
sults are fused with WBF and filtered with a score threshold

(e.g., 0.04).
Test Time Augmentation (TTA). During the inference

process, we perform data augmentation on each input point
cloud, we find this enforces the network to give more robust
predictions. Specifically, three augmentation strategies are
applied on the point cloud, 1) double flip (e.g., along X, Y
or XY axes); 2) multiple rotations (e.g., ±11.25◦, ±22.5◦);
3) frame scaling (e.g., 0.95, 1.0, 1.05). The output boxes are
transformed reversely and aggregated by WBF. We find this
technique effectively improves the orientation estimation,
which is of crucial importance under the metrics.

Weighted Box Fusion (WBF). Weighted Box Fusion [3]
is an effective way to aggregate bounding boxes from differ-
ent sources, which is originally proposed for 2D object de-
tection. Firstly, it performs clustering on detected boxes ac-
cording to the intersection-over-union (IoU). Then, it gen-
erates a new box from each cluster, whose center and size
are calculated by weighted sums of each box in the cluster.
As for the rotation, the one with the highest score will be
directly adapted. And the final confidence score of the up-
dated box is the average confidence of all the boxes in the
cluster.

3. Experimental Results
In this section, we first show the results on the testing

server and then we evaluate the effectiveness of each sub-
module in our solution on validation split.

3.1. Evaluation on Testing Server

We submit our results to the testing server 1, and the re-
sult is shown in Tab. 2. Our solution outperforms the base-
line with 0.20 for mCDS and 0.23 for mAP.

3.2. Ablation Studies

In this section, we search for the best combination of
the hyper-parameters and evaluate the effectiveness of the

1https://eval.ai/challenge/1710/leaderboard/4078



Method mCDS mAP mATE mASE mAOE
Baseline 0.14 0.18 0.49 0.34 0.72
Ours 0.34 0.41 0.40 0.30 0.54

Table 2: The evaluation result on the testing split of Argoverse
benchmark. The result of Baseline is provided by the official team.

techniques. All the results are evaluated on validation split.
Multi-resolution training. In Tab. 3, we can find that

compared with the results with different resolutions, the fu-
sion result achieves the best performance.

Method mCDS mAP mATE mASE mAOE
voxel (0.050m) 0.229 0.282 0.406 0.308 0.563
voxel (0.075m) 0.226 0.278 0.405 0.308 0.588
voxel (0.100m) 0.210 0.260 0.424 0.306 0.611
Fusion 0.238 0.292 0.396 0.304 0.570

Table 3: Evaluation results with different voxel resolutions, the
method is based on CenterPoint without TTA and temporal aug-
mentation. All the models are trained on the full training data
within 60m range.

TTA. The results of TTA can be found in Tab. 4, from
where we can draw the conclusion that TTA can effec-
tively improve performance. Notice that with TTA (× 60),
the overall mCDS is improved but also brings damage to
mASE. We guess that is caused by the scaling augmenta-
tion, so we remove the frame scaling in TTA for the final
submission.

Method mCDS mAP mATE mASE mAOE
voxel (0.100m) 0.210 0.260 0.424 0.306 0.611
+TTA (× 4) 0.222 0.273 0.413 0.302 0.604
+TTA (× 60) 0.236 0.291 0.300 0.617 0.236

Table 4: Evaluation results on TTA strategy. TTA (× 4) uses only
frame flipping along X,Y and XY axes while TTA (× 60) uses
combinations with the augmentation strategies introduced in Sec.
2. All the models are trained on the full training data within 60m
range.

Multi-heads Assignment. In Tab. 5, we can find that
our multi-head assignment can significant improve the per-
formance. The baseline is from the official code 2.

Method mCDS mAP mATE mASE mAOE
Baseline multi-head 0.139 0.181 0.419 0.288 0.690
Our multi-head 0.195 0.246 0.388 0.285 0.639

Table 5: Evaluation results on different multi-head assignments.
All the models are trained on the 10% training data in 60m range
without TTA and temporal augmentation.

Temporal Augmentation. Tab 6 shows that with the
temporal augmentation, the performance can get extra gain.

2https://github.com/benjaminrwilson/torchbox3d

Method mCDS mAP mATE mASE mAOE
voxel (0.100m) 0.195 0.246 0.388 0.285 0.639
+ Temporal Aug 0.211 0.265 0.424 0.277 0.508

Table 6: Evaluation results on temporal augmentation strategy.
All the models are trained on the 10% training data in 60m range
without TTA.

Multi-range Fusion. Tab 7 shows the fusion result by
the models trained with two different ranges, 0 ˜ 60m and
60m ˜ 150m. It is obvious that model (0 ˜ 60m) contributes
most of the performance, and there is still a huge improve-
ment space for the far-distance objects.

Method mCDS mAP mATE mASE mAOE
[0 ˜ 60m] 0.195 0.246 0.388 0.285 0.639
[60m ˜ 150m] 0.018 0.026 0.673 0.423 1.164
[0 ˜ 60m] + [60m ˜ 150m] 0.201 0.262 0.449 0.308 0.776

Table 7: Evaluation results on multi-range fusion. All the models
are trained with voxel (0.100m) setting on the 10% training data
without TTA.

4. Future Works
PointPainting [4] and FusionPainting [6] are two po-

tential methods to fuse the images and semantic informa-
tion, which will be investigated in the future. In addition,
there are still a large number of unlabeled scenes in the
dataset, which can further improve the generalization ability
of the model in training. WS3D [2] and Auto4D [8] are also
potential methods for training the network with incomplete
annotation in the future.
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