
BANet: Motion Forecasting with Boundary Aware Network

Chen Zhang1 Honglin Sun1,2 Chen Chen1 Yandong Guo1

1OPPO Research Institute. 2Waseda University.
{zhangchen4, chenchen, guoyandong}@oppo.com

hsun@akane.waseda.jp

Figure 1: The overall network structure of BANet.We use Encoder Net to extract the embeddings of the vectorized data.
Then Fusion Net fuses the embedding features. Trajectory Decoder Net outputs the final predicted future trajectories.

1. Method

For motion forecasting task, methods using vectorized
input have been shown to be more efficient than methods us-
ing rasterized input, and can get a better performance. Our
motion forecasting model also uses vectorized data as input.

We call our motion forecasting model BANet, which
means boundary-aware network, and it is a variant of
LaneGCN[3]. We believe that only using lane centerline
as input to get the embedding feature of vector map nodes
is not enough. The lane centerline can only provide the
topology of the lanes, and other elements of the vector map
also contain rich information. For example, the lane bound-
ary can provide traffic rule constraint information such as
whether it is possible to change lanes which is very impor-
tant. Therefore, we believe a motion forecasting model can
get a better performance by encoding more vector map ele-
ments and do feature fusion on them. We report our results

on the 2022 Argoverse2 Motion Forecasting challenge and
rank 1st on the test leaderboard.

1.1. Architecture

Our motion forecasting model consists of three parts:
Encoder Net, Fusion Net, and Trajectory Decoder Net. We
use the Encoder Net to extract embedding from different
vectorized data. And then we use the Fusion Net to fuse
and exchange information between actors and vector map.
Finally we use the Trajectory Decoder Net to decode multi-
ple trajectories. The whole network is shown in Fig.1.
Encoder Net: We divide the vectorized data into three
parts: historical observable variables of actors, lane center-
lines, and lane boundaries. Correspondingly, the Encoder
Net also consists of three parts. For the historical observable
variables of actors, including coordinate, heading angle, and
velocity, we use 1D CNN combined with a max pooling
layer to extract features. The coordinate, heading angle and

1



velocity first pass through a 1D CNN resnet block respec-
tively, and then the output features are added together and
then pass through more 1D CNN resnet blocks and a FPN.
For the lane centerlines and lane boundaries of the vector
map, we use MLP to extract features respectively. The lane
graph convolution structure proposed in LaneGCN[3] is an
effective method to update information on the lane center-
lines according to the topological relationships, but for dif-
ferent lane centerline nodes, the influence of each category
of adjacency relationship is different. Therefore, we add
learnable weights to lane graph convolution for each cate-
gory of the adjacency relationship, thereby we can generate
a set of different weights for different lane centerline nodes
to represent the influence of the adjacency relationship of
different categories. Experiments show that this improve-
ment has positive benefits.
Fusion Net: As shown in the Fig.1, our Fusion Net con-
sists of four sub-fusion blocks. First, the features of the
lane boundaries are fused into the lane centerlines through
the matching relationship between the lane boundary and
the lane centerline, so that each node on the lane centerline
can get the traffic rule constraints provided by the nearby
boundary. Secondly, the features of the lane centerline are
fused into the features of the actors. And then the features
of the boundary are fused into the actors, so that the actors
can know the nearby lane constraints. Finally, feature inter-
actions are performed between actors in the scenario. Ex-
cept for the first sub-fusion block, other sub-fusion blocks
are implemented by the distance attention module which is
proposed in LaneGCN[3].
Trajectory Decoder Net As mentioned in many related
works, the target point of the predicted trajectory contain
most of the trajectory’s intent information, so we divide the
trajectory decoder net into two stages. In the first stage, we
regress the target point. And in the second stage, we encode
the target points regressed in the first stage and concatenate
them with the features of the actors to decode the complete
trajectory points. For each agent, we get six future trajecto-
ries with confidence.

1.2. Loss Function

Since we decompose the prediction task into two sub-
tasks: target prediction and trajectory completion, the final
loss consists of three parts: trajectory confidence loss, target
regression loss, and trajectory regression loss. The calcula-
tion details are as follows.

1.2.1 Trajectory confidence loss

For the confidence loss, we dropped predictions with
minFDE > 2m during training, in which case, we con-
sider the model does not yield a good prediction due to the
lack of encoded information.

We use a max entropy model to assign the ground truth
confidence score to each trajectory to get the ground truth
distribution.

c(s) =
exp(−D(s, ŝ))∑N

i=1 exp(−D(si, ŝ))
, (1)

where s is predicted trajectories, ŝ is the ground truth
trajectory. For each time step in the trajectory si, the dis-
placement error D(si, ŝ) = max(∥si,0 − ŝi,0∥2, ∥si,1 −
ŝi,1∥2, ..., ∥si,T − ŝi,T ∥2)

We utilize Kullback-Leibler Divergence to calculate the
loss, aiming to make the predicted probability distribution
close to the ground truth distribution.

Lconf =
1

N

N∑
i

LKL(ci, ĉi), (2)

where c and ĉ are the predicted confidence scores and
the ground truth scores respectively.

1.2.2 Target regression loss

For the target regression, we only regress target points of the
actors that have observations at the last time step, ensuring
that the task of the target prediction net is always to predict
the coordinates on the same time step.

Ltarget =
1

N

N∑
i

Lreg(gi, ĝi), (3)

where, Lreg is the smooth ℓ1 loss over the offset between
the predicted target points g and the ground truth target
points ĝ.

1.2.3 Trajectory regression loss

For the trajectory regression, we consider only the coordi-
nates before the last time steps. The coordinate of each time
step is denoted with st. Similar to the target regression loss,
we adopt the smooth ℓ1 loss.

Ltraj =
1

N(T − 1)

N∑
i

T−1∑
t

Lreg(si,t, ŝi,t) (4)

1.2.4 Total loss

Our total loss is a linear combination of the above loss
terms. We divide the training process into two stages. The
first stage is to train the network except the trajectory com-
pletion module. Since at the early stage of training, the
trajectory completion module cannot obtain accurate target
point features from the target prediction net. Thus, simi-
larly, only the coordinates of the target points are considered
for calculating the confidence loss at this stage.

2



Table 1: Experiments on the Argoverse1 dataset. The results are on the Argoverse1 testset.

Method brier-minFDE (K=6) minFDE (K=6) minFDE (K=1) brier-minADE (K=6) minADE (K=6) minADE (K=1) MR (K=6) MR (K=1)
LaneGCN 2.056 1.362 3.803 - 0.864 1.717 0.161 0.592

BANet(lite) 1.894 1.242 3.538 - 0.816 1.621 0.135 0.558

Table 2: Experiments on the Argoverse2 dataset. The results are on the Argoverse2 testset.

Method brier-minFDE (K=6) minFDE (K=6) minFDE (K=1) brier-minADE (K=6) minADE (K=6) minADE (K=1) MR (K=6) MR (K=1)
BANet(lite) 2.1286 1.4861 5.0032 2.4026 0.7662 1.9457 0.203 0.6336

BANet 2.033 1.3888 4.6997 2.3031 0.733 1.84 0.1797 0.6152
BANet+ensemble 1.9203 1.3648 4.6065 2.1789 0.7075 1.7927 0.1864 0.6007

LS1 = Lconf + Ltarget. (5)

In the second stage, we add the trajectory completion
module to train the whole network.

LS2 = Lconf + Ltarget + Ltraj. (6)

1.3. Implementation details

Our model is trained on the training set with a batch size
of 32. We adopt NAdam [2] optimizer and cosine anneal-
ing with warm restart [4] learning rate, making the learning
rate periodically decay and restart between 1 × 10−3 and
1× 10−5. Specifically, we let the learning rate restart at the
epoch 6 for the first time, and double the period after each
restart. The training procedure will last for 4 restart peri-
ods (90 epochs) in total, where the second training stage
starts at the first restart. At the end of the last period, we
continue training the model with the minimum learning rate
(1× 10−5) until epoch 100 to make the network stable.

1.4. Ensemble

Ensemble is an important trick to refine the final predic-
tion results. We selected 7 sub-models with different learn-
ing rates and distance attention thresholds, which means
that for each agent, we have 42 predicted future trajecto-
ries. Then we use k-means to cluster the 42 target points
and set the number of cluster centers to six. The final six
trajectories are the average values calculated by multiply-
ing the original trajectories contained in the six clusters by
the weight W respectively. It should be noted that the result
of multiplying the confidence c of each original trajectory
by the weight W , as the sampling weight of k-means, will
get a better result than the general k-means clustering. The
weight W is calculated according to the value of the brier-
minFDE α of the original models used for clustering, and
the calculation formula is as follows:

Wi = ci ∗
exp(−αj)∑N

j=1 exp(−αj))
(7)

N is the number of submodels used for clustering, and for
each trajectory used for clustering, its corresponding alpha

is the value of the brier-minFDE of the model to which it
belongs.

2. Experiments
Because the performance validation of our BANet was

initially performed on the Argoverse1 dataset[1], our ex-
perimental records consist of two stages, the Argoverse1
dataset[1] and the Argoverse2 dataset[5]. The experimental
results on the testset of the Argoverse1 dataset[1] are shown
in Table 1, and the experimental results on the testset of the
Argoverse2 dataset[5] are shown in Table 2.

Here we compare the performance of BANet and
LaneGCN[3] on the testset of Argoverse1 dataset[1]. Be-
cause the vector map of the Argoverse1 dataset[1] does not
contain lane boundary, and the number of observable vari-
ables for actors is also less than that of the Argoverse2
dataset[5]. Therefore, the BANet we tested on the Argo-
verse1 dataset[1] does not contain boundary encoder and
fusion, nor does its input contain heading angle and veloc-
ity. We call this model BANet(lite).

References
[1] M.-F. Chang, J. W. Lambert, P. Sangkloy, J. Singh,

S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey, D. Ra-
manan, and J. Hays. Argoverse: 3d tracking and fore-
casting with rich maps. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[2] T. Dozat. Incorporating nesterov momentum into adam.
2016.

[3] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng,
and R. Urtasun. Learning lane graph representations for
motion forecasting. In European Conference on Com-
puter Vision, pages 541–556. Springer, 2020.

[4] I. Loshchilov and F. Hutter. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[5] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh,
S. Khandelwal, B. Pan, R. Kumar, A. Hartnett, J. K.
Pontes, D. Ramanan, P. Carr, and J. Hays. Argoverse 2:
Next generation datasets for self-driving perception and

3



forecasting. In Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks
(NeurIPS Datasets and Benchmarks 2021), 2021.

4


	. Method
	. Architecture
	. Loss Function
	Trajectory confidence loss
	Target regression loss
	Trajectory regression loss
	Total loss

	. Implementation details
	. Ensemble

	. Experiments

